-

N

Vi

S D . s
) LD

Performance Analysis Approximations for P_

Parallel Processing of Concurrent Tasks

Erol Gelenbe
Zhen Liu

December 1, 1987

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 87.30

(NASA-CP-180476) PFRFURMANGE ANALYSIS NRO-70749

APPRUNIYATIONS FU? PARALLFL PRUCLESITNG OF

CONCURRINT TASKS (Research Inst. rfor

Advinced Computer Science) 22 n unclas
80/62 0760050

RINCS

Research Institute for Advanced Computer Science

Performance Analysis Approximations for

Parallel Processing of Concurrent Tasks

Erol Gelenbe
Zhen Liu

December 1, 1987

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 87.30

Abstract

Thss paper presents a method for obtaining approrimate solutions
to the performance analysis of parallel processing on multiprocessor
systems composed of e finite number of homogeneous processors. In
particular, we compute the ezpected response time of jobs consist-
ing of concurrent tasks. We assume that each task requires an ez-
ponentially distributed amount of processing. The concurrency and
precedence relations between tasks are described by directed acyclic
graphs, referred to as task graphs or precedence graphs. Simulation
results which we present indicate that the estimates provided by our
method are lower bounds to the mean overall response time of tasks
ezecuted on the system.

1 Introduction

There has been increasing interest in performance analysis of concurrent pro-
grams in recent years. A concwrent program consists of a set of interdependent
tasks with precedence constraints which are usually described by a task graph,
also referred to as a precedence graph, whose nodes represent tasks and directed
edges represent precedence relations between tasks. One of the most important

Work reported herein was supported in part by Cooperative Agreement NCC 2-387
between the National Aeronautics and Space Administration (NASA) and the
Universities Space Research Association (USRA), and by a grant from Centre National
d’Etudes des Telecommunications and the Centre National de 1a Recherche Scientifique
(ATP mathematiques-Informatique).

performance measures of concurrent programs is the overall response time of a
concurrent program running on multiprocessor systems.

When the durations of tasks are fixed and there are infinitely many proces-
sors, it is easy to determine the completion time of a concurrent program by
using PERT diagrams. If resources are limited, research has been carried out in
the area of task assignment and task scheduling. When task durations are al-
lowed to be random, the performance analysis of concurrent programs becomes
more difficult.

In order to make the analysis tractable, simple structures have been con-
sidered. Robinson [Rob 79, and Sahner and Trivedi [ST 87| obtain the overall
execution time by restricting the graph structure to be seres-parallel. Gelenbe
et al. [GMSW 86] consider the same graph structure with random graph models
and derive a closed form expression for the maximum speed-up which can be
expected by executing such programs on a multiprocessor system.

Dodin {Dod 85] studies the general directed acyclic graph structure. By
removing edges or spliting nodes, a directed acyclic graph can be transformed
into a series-parallel graph. Thus lower bounds and upper bounds for overall
completion time are obtained.

Gelenbe et al [GNPT 86| model the task graph of a parallel computation by
a random, directed, acyclic graph consisting of m vertices in which an arc from
vertexs,1=1,2,---,m— 1 to vertexJ, 7 =1+ 1,---,m exists with probability
p- They derive an approximation for the expected processing time of a task
graph of this type on an infinite number of processors under the assumption
that each task requires an exponentially distributed amount of processing.

In this paper, we consider performance models of concwrrent programs on
finite resources. In particular, we consider the response time of concurrent pro-
grams executing on multiprocessor systems which consist of a finite number of
homogeneous processors. The response time is defined as the delay between the
arrival date of a job to the system and the date where every task of that job
has completed its processing. At first, we assume that all jobs have the same
task graph. This restriction is removed in Section 5. The task graphs under
consideration have a general directed acyclic structure.

It is assumed that the processing demands of the tasks composing a con-
current program are independent with identical exponential distributions. The
arrivals of jobs (i.e., concurrent programs) to the multiprocessor system are
governed by a Poisson process. We also assume that tasks are assigned to pro-

cessors just before their execution, and that there is no a priori knowledge of .. .- ...

the processor upon which a task will be executed.

The model we consider is analytically intractable. In this paper, we obtain
a computationally simple solution for the average delay of jobs in the system
using an approximate technique based on product form networks.

In Section 2, we describe the problem in detail. In Section 3, the approxi-
mate solution is described, whereas in Section 4, approximate solution results
are compared to simulation results. Section 5 provides an extension of our
method to a multiprogramming environment.

2 Problem description

We assume that the multiprocessor system under consideration has M identical
processors. A main memory is shared by all processors. It is assumed that
this memory is of unlimited size so that it can store the address space of all
programs which are present in the system. The workload consists of a set of
structurally identical concurrent programs consisting of a fixed number of inter-
dependent tasks. The precedence constraints between tasks are defined by an
acyclic precedence graph in which each node represents a task.

We consider a stream of jobs (i.e., concurrent programs) arriving to the sys-
tem according to Poisson process with parameter A . All the jobs have the
same precedence graph, denoted by G . Each task requires an exponentially
distributed processing time with parameter u . Processing times of different
tasks are assumed to be independent. Let N be the maximum number of pre-
decessors that tasks of graph G may have, N < m -1, where m is the number
of tasks in the job (or nodes in G).)

Upon arrival, a job is immediately split into its constituent tasks so that
tasks which have no predecessors are ready for immediate execution and enter
directly into the processor queue waiting for service by one of the processors.
The other tasks, which are not yet available for execution because of precedence
constraints, have to wait in a buffer until their predecessors have been serviced.

We model this wait as follows. Tasks having ¢ (§ =1,2,---,N) predecessors
enter buffer s , and wait for their 1 predecessors’ service completion. When the
execution of a task is completed (by one of the processors), it leaves the system
and may free some tasks waiting in one of the buffers. Once released by all
its serviced predecessor tasks, a task leaves the buffer to join the server queue.
An arriving job remains active in the system until all the tasks of the job have
completed execution.

2.1 The general systemn model

An exact representation of the system could be the following. The state of the
systemn is a collection of tasks which are either waiting for their predecessor
tasks to be terminated, or waiting in queue, or being processed by one of the
processors. For a task to be waiting in queue or to be processed, all of its prede-
cessor tasks must be processed. Assuming FIFO service at the processors, the
state must also represent the order of arrival of tasks, which is determined by
the order in which the programs they belong to have arrived.

Each task will be denoted by a pair of integers (3,) where 1 is the program
number and j is the task number within the program. The state of the system
will be represented by

S=(W,Q)
where W and Q are defined as follows:

(t1:ta-2tq)y & (1 £9<|Q)) is a task, and there
are |Q| tasks running or ready to run,

Q

0, if there are no tasks in the system.

The tasks ¢t; in Q are given in FIFO order with ¢, being at the head of the
queue. Therefore the first M of these tasks will be actually running.

{ 0, if no tasks are waiting,
W —

(w1, w3z, -, wywy), if there are |W| tasks waiting.

where each w; is a pair

w = {Ty, A},

in which T; is a task and A; is the set of tasks which are the immediate pre-
decessors of T; . In fact, A; will be unnecessary if all the programs running in
the system have exactly the same precedence graph; in that particular case the
task T; uniquely identifies the set A, for all programs. However if programs can
have different task graphs, the set A; will have to be specified.

The analysis of this general state-space model seems beyond the capability of
analytical modelling. In order to illustrate the complexity of the model consider
the state transition associated with the arrival of a program, from S = (W, Q)
to S'=(W',Q):

(wl, Ty Wiwy U|'Wl+p ter ’wl’Wl+k)' if there are k tasks with
W'= predecessors in the arriving program,

0, if W|=0and k=0.

(tr, -1 tyqp tol+10 “1t{Qj+5)» if there are j tasks without
Q' = predecessors in the arriving program,

0, if|Q=0andj=0.

Obviously w; = {T}, A}} , so that the set of tasks of the arriving program
is given by {T{w 410 s Tiwisnr Y410 " "1 tiq+5)} - Furthermore the order in
which the tasks ¢/ which have no predecessors are placed in the processor queue
Q' is of importance; we shall assume that they are placed in the order of increas-
ing task number, so that the task with no predecessors and with the smallest
task number is placed closest to the head of the queue. This will be the rule
which will be used in general for placing tasks in the processor queune.

The representation of the other transitions related to task departures is
even more complex. That is why in the rest of this paper we shall deal with
a simplified mode] in which tasks and their predecessors will not be identified
individually, and certain simplifying assumptions will be made about the state
transitions.

2.2 The simplified model

In the simplified model, we shall consider generic tasks. The state of the system
will be represented by the vector

k= (kO)kl.)"'ka)

where k; represents the number of tasks in the system which haves (1 << N)
predecessor tasks. Recall that N is the maximum number of predecessors which
a task may have. ko denotes the number of tasks which have no unfinished
predecessors at the instant considered. This state representation is obviously
much simpler than the general one. However it does not capture in a precis
manner the structure of the task graphs. The state transitions form k to k' are
given as follows for the simplified model.

e Arrival of a program or job represented by a sequence of task arrivals.

Let A be the arrival rate of programs to the system. We shall consider
a Poisson arrival rate of tasks of rate Am , m being the total number of
tasks per program. Thus we are modelling job arrivals by a flow of single
task arrivals. Let m; be the number (or average number for a random
program graph) of tasks having s predecessors. Upon arrival of a task,

k’=(k01"';kl'+11"')kN)) 0<:<N

with probability chosen to be p; = m;/m . Notice that E: m; = m . The
rate of transition from state k to this particular k’ is thus Amp, .

e Departure of a task from one of the wait buffers.

We assume that transitions from state k to some state
k'=(ko+1,- -, k-1, -, kn), 1<i1<N

where k; > 0, occur with rate u;(k;) . These represent the departure rate
of a task from the wait buffer into the processor queue. p;(k;) will be
determined as a function of model parameters as given below.

e Departure of a task from the processor queue.
This will lead into the state

k'=(ko'—1,k1,"‘,kn), ko>0

with rate " ko< M
_ oty f1<ko<
#o(ko) = { My, ifko> M (1)

Thus we are assuming that all individual tasks have independent expo-
nentially distributed execution times of average value 1/u . We may take
= 1 without loss of generality.

No other state transitions, except for those given above, are allowed to oc-
cur. Figure 1 illustrates the simplified model.

3 Delay analysis

The determination of the response time of a job described by a task graph G
(i.e., the overall delay of graph G’s tasks through the system), denoted by Rg,
is of crucial importance in qualifying the performance of parallel processing.
However hardly any theory exists to tackle such problems. The problem seems
to be open in its general form.

For the sake of obtaining a tractable solution to the system, we restrict
our attention to the simplified model, in which the following two simplifying
assumptions have been made in Section 2.2.

A1) Every buffer is replaced by a FIFO queue. The service time of
queue i (1 < ¢ < N) is exponentially distributed with parameter u;
defined in (3). When a customer of queue 1 is serviced, it joins the .
queue 0 (the multiprocessor queue).

Servers

Queue 0
Task Arrivals
Po
Queue 1 Server Queue
pl
Queue 2

Figure 1: The Model Description

A2) The arrivals of tasks to the system constitute a Poisson process
of parameter A, A = m). Let 11,75, -- -, Ty, - - - be the arriving tasks.
We assume that tasks Tim 43, Tim+2 - *) Tim4m form a precedence
graph (¢ = 1,2,--). Upon armival, a task becomes a customer of
queue 3 (0 < 5 < N), denoted by C; , with probability p; = m;/m.

With assumptions Al and A3, we obtain a product form network (c.f.
[BCMP 75]) which provides the basis of our approach.

Before proceeding with the analysis, we introduce the following notation:
e P(k) : joint stationary queue length probability distribution,

e P;(k;) : stationary probability for queune ¢ (0 < ¢ < N) to have k; (n =
0,1,2,--) customers,

e Ek; : mean number of tasks in queue s (0 < i < N),

e Ek : mean number of tasks in the system,

e R; : mean response time of tasks in quene s (0 <3 < N),
e R, : mean response time of tasks in the system,

¢ Q : mean number of jobs in the system,

e R;: mean graph response time of graph G, ie., the overall delay of tasks
of graph G through the system,

e W5 : expected waiting time of j customers who simultaneously arrive at
queue 0,

® g, : service contribution to queue 1 (0 < ¢ < N) of a customer Cy leaving
queue 0.

The notion of service contribution is introduced in order to derive u; (1 <
1 < N). Let G, be the set of nodes of graph G, Suc(v) the set of successors of
v, rank({v) the number of predecessors of node v. g; is measured by the average
number of successors having s predecessors.

6 ¥ HE X Lpenk(e) = 1) (2

vEG, v'ESuc(v)

where 1(z) is the characteristic function:

1, if zis true
1(’)’{0, if £ is false

Thus we may approximate the effect of the departure of a task from the system,
on the set of waiting tasks, as the departure of {g;/t) tasks on the average from
the set of tasks in the s-th waiting queue. This leads to the approximation:

wo= /s (3)
where 7 is the effective departure rate of the multiprocessor service queue:
. .
v = D uols) - Pol9) (4)
j=1

Since our approximate model is an open product-form network, we have the
following formula for the joint queue length probability ((BCMP 75]):

Nk A-e,-
P(k) = Kﬂﬂm (5)

=0n=1

where K is a normalising constant, ug is expressed by (1), and by the nature of
our model,

0o = 1 . (6)

ei= pi, H1SI<N - (7)

andfor 1<s< N
w(n) = i, m=1,2,-- ®)
We derive the marginal queue length probability distribution P; (k) (¢« =
0,1,---, N} in the following way.

Let X' = (ko, -, kic1, ki + 1,kiyy, -+, kx). In using (5), P(k’) can be
expressed as

P(k) = P(k)-(Aes/mi(k: +1)) : (9)
Since
Pi(k:) = > Plkoy- kioy kiskissyo-- k) (10)
Kou o Kim 1o Ksg1sr ki
and
Pi(ki +1) = Z Plkoy- - ki ki + L kigy, -, ky) (11)

koy o kicp ki1, kn

Combining (9), (10), and (11), we obtain, for n=0,1,2, - - -

A-e
Pin+1)=P(n)- e (12)
Let
: € Pi(0) (13)
then
> A-g
in) = K;- —_ 1
Pi(n) =K, gm(n+l) (14)
Summing over alln =0,1,2,---, we have
o0
> Pn)=1 (15)
n=0
Hence we get the expression of K;
= A-e
) o
n=0jy=1
Therefore, for s =0,1,---,N and n=0,1,2,--, (14) can be rewritten as
= A-e T A-e
. = - — 17
Pi(n) (ZHM,‘H,) 1l (17)

n=0j =1 I=1

Fori1=0,1,---, N, the mean queue lengths are expressed as

Ek;=)_n-Pi(n) (18)
n=1
So the mean number of tasks in the system Ek is given by
N
Ek=)_Ek; (19)
=0

By Little’s results, we obtain the formula for the average response time of a
customer C; (¢ =0,1,---,N)

_ Ek,
Ri=— (20)
and the average delay of a task R,
N

The above formulae provide performance measures at the task level. In par-
ticular, R; (=0,1,---, N) indicates the time that a task having 1 predecessors
must expect to wait before becoming available for execution, and R, indicates
the expected delay of a task passing through the system.

We now compute R, the average response time of jobs. First of all, we
define the concept of level.

The level of a node v of a directed acyclic graph, denoted by L(v), is defined
as follows: .
1. L(v) 4’1, if ve G, and v has no predecessor,
2. L(v) = (max,e pre(o) L(p))+1, where Pre(v) denotes the set of immediate
predecessors of node v.

The level of a task is considered as the level of the corresponding node in
the task graph. The level of a graph, denoted by Lg, is given by

Lg = max L{v)

In order to estimate the mean response time of jobs, we neglect the fact that
task processing times will vary in general, and we assume that they are constant.
Therefore we assume that tasks of a same job are serviced by the processors level
by level, and a task of level s+ can be serviced if and only if all tasks of leveli—1

belonging to the same job have completed execution.- Furthermore we assume - -

that

10

A3) Tasks of the same level become simultaneously available for
execution.

Let t;,t3,---,t, be a group of tasks concurrently arriving at the multipro-
cessor service queue. Without loss of generality, we assume that their service
order is ¢; < t3 < --- <t,. Let wy(n) denote the mean waiting time of task ¢,
(1 < k < u) before service if there are n (n = 0,1,2,--) tasks in the queue at
the instant of the arrival of the group. Thus we have the formula

fn<M-k

w"(")={(n+k Mp—YM #n>M—k+1 (22)

Therefore, for 5 = 1,2, -, the expected waiting time of 5 concurrent tasks in
the server queue can be expressed as

=3 Polrn) - wsln) (23)
G= Y Ruln)(ntk—M)-u/M (24

n=maz(M-k+1,0)

Let b(l) denote the number of tasks of level | (1 < 1 < Lg). According to
assumption AS, tasks are serviced level by level, and tasks of the same level
concurrently arrive at the multiprocessor queue. Therefore the job response
time of graph G, Rg, may be expressed as the sum of the completion time of
each level:

Rg = Z(+“’b(:)) (25)
1=1

And finally, by Little’s result, we get the average number of jobs in the system

Q,
Q=1 -Re (26)

Notice that the synchronisation delay of tasks induced by the precedence
graph is taken into account in computing the mean number of tasks and the
task response time. In computing the mean delay of a job passing through the
system, however, the synchronisation delay of tasks is ommited since we neglect
the variability of the service times of the tasks.

4 Comparison of approximations with simula-
tion results

In this section we compare our approximations of expected job response time
against results obtained from simulations. The task graph examples are selected

11

from various parallel processing application areas such as numerical analysis,
image processing, etc. Their structures are presented in the Appendix. Tables
1-5 report results of comparisons of approximations with simulations. Figure 2
illustrates the response times of graph 3 under different system load conditions.
The simulations have been carried out with the QNAP2 package. 95% confi-
dence intervals have been calculated with the regeneration method. The system
load used in Tables 1 to 5 is defined by

Table 1. Comparison of job response time for graph 1.
(A=006,p=1)

number of || system | approximate | simulation | relative
processors load solution estimate | error %
1 0.720 32.57 | 46.841+2.45 30.3
2 0.360 11.19 | 12.21+0.22 8.3
3 0.485 8.71 | 9.2710.09 6.1
[0.240 8.02 | 8.39+0.06 4.4
10 0.072 8.00 | 8.30%0.06 3.6
Table 2. Comparison of job response time for graph 2.

(A=006,pu=1)

number of || system | approximate | simulation | relative
processors load solution estimate error %
1 0.960 184.00 | 241.3+36.23 23.7

2 0.480 14.13 | 17.691+0.44 20.2

3 0.320 10.85 | 12.48+0.18 13.1

5 0.383 7.35 | 10.49%0.07 30.0

10 0.096 7.00 | 10.21+0.06 314

12

(27

Table 3. Comparison of job response time for graph 3.
(A=006,u=1)

number of || system | approximate | simulation | relative
processors load solution estimate error %
1 0.960 256.00 | 260.2+37.61 1.6

2 0.480 14.94 | 18.69+0.44 20.1

3 0.320 10.92 | 13.78+0.16 20.8

5 0.192 10.03 | 12.59+0.08 20.3

10 0.096 10.00 | 12.49+0.07 19.9

Table 4. Comparison of job response time for graph 4.
(A=0.06,u=1)

number of || system | approximate | simulation | relative
processors || load solution estimate | error %
1 0.900 78.00 | 134.3+14.89 41.9

2 0.450 12.78 | 16.10+£0.45 20.6

3 0.300 9.79 | 10.10+0.12 3.0

[3 0.180 7.21 | 8.21+0.08 12.2

10 0.090 7.00 | 7.89+0.05 11.3

Table 5. Comparison of job response time for graph 5.
(A=008,p5=1)

number of || system | approximate | simulation | relative
processors load solution estimate error %
1 0.960 208.00 | 296.1+44.88 29.8
2 0.480 14.75 | 18.32+0.52 19.5
3 0.320 11.06 | 11.7940.19 6.2
L3 0.192 8.25 | 9.3610.06 11.9
10 0.096 8.00 | 8.98+0.05 11.0

Our approximations compare favorably with the simulation results. The
relative errors are mostly within 10 or 20%, and in the worst case within 40%
of the simulation results. The fact that our approximation underestimates the
overall delay can be explained by the three simplifying assumptions. Indeed:

1. Bulk arrival queueing systems behave generally worse than single arrival
systems under the same load.

2. Dependent services (in our.model, -services of queue 1 to N) generally -
imply a larger variance of service time, so that the waiting time is greater.

13

Response Time

4
!
5¢G |
/
2 Processors /
40.
30¢
20
16
10 Processors
Load
. . Systc’m

0r 02 03 04 05 06 07 08 09

: Simulation Results

: Approximations

Figure 2: Response Times of Graph 3 Under Different System Load Conditions

14

3. Synchronization of tasks introduces additional delays to task execution
times.

These intuitive arguments indicate that our approximation provides lower bounds
to expected response time of jobs.

5 The extension of the method to multipro-
gramming systems

The extension of our approximate solution to the performance analysis of paral-
lel processing in multiprogramming environments is immediate. In this section,
we shall only discuss it briefly. The notation, if not redefined, is taken from
Section 3.

In a multiprogramming system, different types of jobs are allowed to be
executed simultaneously. Let G;,G,,---,Gyg (H > 1) denote task graphs of
jobs of classes 1,2,---, H, respectively. We assume that arrivals of jobs of
classe h (h =1,2,---, H), are generated by independent Poisson processes with
parameter A,. Jobs of class h have m) tasks which are divided into Nj (N <
mp — 1) groups according to their respective number of predecessors. Let

= 28
N . g}‘asxﬂ N, (28)
Every task (whichever class or job it belongs to) is assumed to require an expo-
nentially distributed amount of processing with parameter pu.

By replacing bulk arrivals with Poisson arrivals, and replacing waiting buffers
with independent exponential service queues, we obtain a new simplified model
which is similar to the one in Section 3. We thus consider a stream of tasks
1,82, -, tn, - - arriving to the system, where ¢, (n > 1) belongs to a job of
class 5 with probability m,/ Zf= 1 Mu. The arrivals are represented by a Poisson
process with parameter A,

H
A=) mp- A (29)
h=1
Upon arrival, a task becomes a customer of queue ¢ (0 < ¢ < N) with probability
Piy o - R
Ln=y Mhi
po = bzt TH (30)
Eh:l ™Mh
where
mp; = number of tasks in Gj, having ¢ predecessors. (31)

15

which satisfies

Ny
Y mpi= mn, h=12,--- H (32)
=0

The concept service contribution is represented by

H
6« = =—(% T lrenk(v)=1) (33)

H
Lh=1"h Azt vE€GH v'ESuct(v)

where G? denotes the set of nodes of graph Gh, Such(v) denotes the set of
successors of v.

Formaulae (5)-(8), (17)-(21) remain valid for the queue length probabilities,
mean queue lengths, mean number of tasks in the system, and average delays of
tasks. Furthermore, the mean number of tasks which belong to jobs of class 5
(=1,2,---,H) inqueues (+ =0,1,---, N), denoted by Eky;, can be expressed
as

myids
25:1 Mpidn
where Ek; is expressed by (18), and the mean number of tasks which belong to
jobs of class (7 =1,2,---, H) in the system, denoted by Ek?, can be expressed
as

Ekj; = Ek; (34)

EW =" g (35)
h=1"hAn

where Ek is expressed by (19).

The idea for computing the expected response time of a job of class h remains
the same. Maintaining the assumption AS, we-can rewrite (25) as follows

Lc“
Ro, = 3 (= +To) (36)
iI=1 L

where R, denotes the expected response time of a job of class h, Lg, denotes
the level of graph Gh, b () denotes the number of tasks in graph Gj, at level |
(1<1< Lg,), and @5 (7 = 1,2,---) is given by (24).

Similar to (26), the average number of active jobs of class k is expressed as:

Qh = Ah . RGA (37)
and the average number of jobs in the system '
H
Q=) (38)
h=1

16

As above described, we obtain a computationally simple estimates for per-
formance analysis for parallel processing in multiprogramming environments.

6 Conclusions

Parallelism is often limited by precedence relations within programs and finite
resources in parallel processing systems. Performance predictions for concur-
rent programs on multiprocessor systems are of crucial importance for both
software and hardware designers. Nevertheless hardly any theory is available
for analysing the performance of concurrent programs which have general di-
rected acyclic graph structures and execute on multiprocessor systems with a
limited number of processors.

In this paper, we have considered the expected response time of concurrent
programs executed on multiprocessor systems with a finite number of proces-
sors. We have introduced an approximate model to estimate the performance
measures of parallel processing. The method has been extended to multipro-
gramming systemas.

The multiprocessor system under consideration consists of a finite number
of homogeneous processors which share a central memory. Arriving jobs (ie.,
concurrent programs) consist of tasks with identical exponential execution time
distribution. The concurrency and precedence relationship between tasks are
defined by directed acyclic graphs of general structure. The arrivals of jobs are
assumed to be generated by a Poisson process.

Because of the concurrency, the queueing network resulting from such a sys-
tem does not have a product-form solution. An approximate solution method
has been described which models the system by a set of waiting queues for
tasks whoee predecessors have not yet terminated their execution, and a central
server with variable service rate. Some simplifying assumptions have been made
to derive the estimates of the response time of jobs. The accuracy of the ap-
proximation has been reported through comparisons against simulation results.
Some arguments have been provided to indicate that our approximations are
lower bounds to the expected response time of jobs.

Future research topics include investigating approximate solutions to per-
formance estimates of concurrent programs consisting of tasks with different
service distributions, and approximate solutions to the case where task assign-
ment strategies are static, which means that each task has a previously specified
processor destination.

17

References

|BCMP 75): Baskell,F., Chandy,K.M., Munts,R.R. and Palacios,F.G. Open,
Closed, and Mized Networks of Queues wunth Different Classes of Customers.

J.ACM Vol 22, pp.248-260 (1975)

[Dod 85): Dodin,B. Bounding the Project Completion Time Distribution in
PERT Networks. Operations Research, Vol.33, No.4, pp.862-881 (July-August
1985)

[GMSW 86]: Gelenbe,E., Montagne,E., Suros,E. and Woodside,C.M. A Per-
formance Model of Block Structured Parallel Programs. ISEM research report
n°46, Université de Paris-Sud, France (1986)

[GNPT 86): Gelenbe,E., Nelson,R., Philips,T. and Tantawi,A. The Asymp-
totic Processing Time for a Model of Parallel Computation. Proceedings of
National Computer Conference, Las Vegas, 1986.

[Rob 79): Robinson,).T. Some Analysis Technigues for Asynchronous Mul-
tiprocessor Algorithms. IEEE Trans. on Software Engineering, VoLSE-5, No,,
pp.24-31 (Jan. 1979)

[ST 87): Sahner,R.A. and Trivedi,K.S. Performance and Reliability Analy-
s1s Using Directed Acyclic Graphs. To appear in IEEE Trans. on Software
Engineering.

18

7 Appendix: Task graph examples

Graph.1

O<+—0

T
s

O«

O«4+-0O«

19

o
by
i
:

.
194

